韩日AV在线,纷乐,污污网站免费在线观看,亚洲一区二区三区中文字幕在线

泰山玻璃纖維
浙江大匯-承載膜
沃達(dá)重工 液壓機(jī) 華征新材料 天騏機(jī)械
當(dāng)前位置: 首頁 » 復(fù)材學(xué)院 » 學(xué)術(shù)論文 » 正文

復(fù)合材料風(fēng)電葉片有限元?jiǎng)偠确治?/h1>
放大字體  縮小字體 發(fā)布日期:2016-03-01  來源:復(fù)材應(yīng)用技術(shù)網(wǎng)  瀏覽次數(shù):222
 引言

復(fù)合材料葉片是風(fēng)機(jī)設(shè)備中將風(fēng)能轉(zhuǎn)化為機(jī)械能的關(guān)鍵部件[1]。目前,葉片尺寸正在朝著大型化的方向發(fā)展,而其結(jié)構(gòu)性能試驗(yàn)的成本也隨之增加,因此,找到一種有效的結(jié)構(gòu)計(jì)算分析方法對于節(jié)約成本以及結(jié)構(gòu)校核和開發(fā)新型葉片就顯得尤為重要。

隨著計(jì)算機(jī)技術(shù)的發(fā)展,有限元法在結(jié)構(gòu)分析中得到了廣泛的應(yīng)用。有限元強(qiáng)大的建模和結(jié)構(gòu)分析功能適用于復(fù)合材料葉片的應(yīng)力、變形、頻率、屈曲、疲勞及葉根強(qiáng)度分析。ANSYS是一款著名的商業(yè)化大型通用有限元軟件,廣泛應(yīng)用于航空航天、機(jī)械制造等領(lǐng)域。ANSYS多物理場仿真及耦合的獨(dú)特功能,以及200多種單元類型,可以對復(fù)合材料結(jié)構(gòu)設(shè)計(jì)、材料研究及制造工藝提供完整的解決方案??傊?,對于復(fù)合材料結(jié)構(gòu)計(jì)算分析,完全可以通過ANSYS程序來實(shí)現(xiàn)[2]。

但是,因復(fù)合材料葉片結(jié)構(gòu)的特殊性,例如:①形狀不規(guī)則(每個(gè)截面都不同);②鋪層復(fù)雜,過渡層很多;③大量夾層結(jié)構(gòu)(“三明治”結(jié)構(gòu));④大量粘結(jié)區(qū)域。所以,其有限元模型的建立是葉片結(jié)構(gòu)有限元分析中的一大難題,而單元類型的選擇又決定著建立有限元模型的難易。目前,復(fù)合材料風(fēng)電葉片有限元模型在單元類型的選擇上主要采用三種單元類型:shell99殼單元、shell91殼單元、Solid46實(shí)體單元。選擇實(shí)體單元,雖然能提高有限元的計(jì)算精度,但是建立葉片的有限元模型會花費(fèi)大量的工作時(shí)間,且很難定義單元坐標(biāo),這非常不利于工程上葉片的結(jié)構(gòu)校核及分析;選擇殼單元,可以方便地設(shè)置和修改鋪層厚度,單元坐標(biāo)的設(shè)置容易實(shí)現(xiàn),建模和計(jì)算時(shí)間比采用實(shí)體單元少,這極大地提高了工作效率,而且其計(jì)算精度完全可以滿足工程需要。

因此,本文使用shell99殼單元,通過三維建模,建立了葉片的有限元模型,并以懸臂梁的方式,對葉片的模態(tài)和靜力變形進(jìn)行了計(jì)算分析,通過計(jì)算,得出了葉片的重量、振型及最大變形,并與試驗(yàn)數(shù)據(jù)進(jìn)行了對比。 

1 有限元模型的建立

通常,在整個(gè)有限元求解過程中最重要的環(huán)節(jié)是有限元前處理模型的建立。一般包括幾何建模、定義材料屬性和實(shí)常數(shù)(要根據(jù)單元的幾何特性來設(shè)置,有些單元沒有實(shí)常數(shù))、定義單元類型,網(wǎng)格劃分、添加約束與載荷等。

由于葉片形狀復(fù)雜,而一般有限元軟件所提供的幾何建模工具功能相當(dāng)有限,所以在ANSYS中難以快速方便地對其建模。因此,針對較復(fù)雜的結(jié)構(gòu),可以先在三維CAD軟件(如在PROE中)建立幾何模型,然后在有限元分析軟件ANSYS中通過輸入接口讀入實(shí)體模型,最后,在ANSYS環(huán)境下,通過幾何修補(bǔ)和簡化、板殼中面抽取、節(jié)點(diǎn)偏置、網(wǎng)格自動(dòng)劃分等技術(shù)對葉片模型進(jìn)行處理,并形成高效準(zhǔn)確的有限元模型,使之適用于CAE分析。

1.1 單元設(shè)置與材料屬性

針對葉片中的梁、殼等復(fù)合材料層合結(jié)構(gòu),ANSYS提供了一系列的特殊單元——結(jié)構(gòu)多層復(fù)合材料單元,以模擬各種復(fù)合材料。鋪層單元中可以考慮復(fù)合材料特有的鋪層特性和各向異性特性。

本計(jì)算采用的是相對簡單的線性鋪層單元Shell99。該單元是一種八節(jié)點(diǎn)3D殼單元,每個(gè)節(jié)點(diǎn)有六個(gè)自由度,主要適用于薄到中等厚度的板和殼結(jié)構(gòu),一般要求寬厚比應(yīng)大于10。Shell99可實(shí)現(xiàn)多達(dá)250層的等厚材料層,或者125層厚度在單元面內(nèi)呈現(xiàn)雙線性變化的不等厚材料層。如果材料層大于250,用戶可通過輸入自己的材料矩陣形式來建立模型,還可以通過一個(gè)選項(xiàng)將單元節(jié)點(diǎn)偏置到結(jié)構(gòu)的表層或底層。

單元鋪層主要是確定纖維方向和纖維量,是復(fù)合材料風(fēng)電葉片結(jié)構(gòu)設(shè)計(jì)的一個(gè)重要環(huán)節(jié)。鋪層設(shè)計(jì)的優(yōu)劣在很大程度上決定著結(jié)構(gòu)設(shè)計(jì)的成敗[3]。

本計(jì)算的鋪層完全按照工藝鋪層進(jìn)行設(shè)計(jì)。在ANSYS環(huán)境下,針對Shell99單元,通常有兩種方法來定義材料層的配置:①通過定義各層材料的性質(zhì);②通過定義表示宏觀力、力矩與宏觀應(yīng)變、曲率之間相互關(guān)系的本構(gòu)矩陣。第一種方法是由下到上一層一層定義材料層的配置,底層為第一層,后續(xù)的層沿單元坐標(biāo)系的Z軸正方向自底向上疊加,對于每一層材料,由單元實(shí)常數(shù)表來定義材料性質(zhì)、鋪層方向角、厚度,如圖1所示為葉片某部分的單元鋪層;第二種方法是定義各層材料性質(zhì)的另一種方式,矩陣表示了單元的力-力矩與應(yīng)變-曲率的關(guān)系,必須在ANSYS外進(jìn)行計(jì)算。

葉片1 

圖1.單元鋪層圖

Fig.1 element laminated diagram

葉片的材料體系為玻纖/環(huán)氧,葉片制作采用真空灌注工藝,所用復(fù)合材料有:三軸向玻璃布、雙軸向玻璃布、單軸向玻璃布、PVC泡沫、Balsa木、氈等。玻璃鋼復(fù)合材料與泡沫材料的主要力學(xué)性能見表1、表2所示,其中,Ex為材料的纖維方向,玻璃鋼復(fù)合材料的密度取ρ=1888kg/m3,Balsa木密度取ρ=150kg/m3,PVC密度取ρ=80kg/m3。

表1.玻璃鋼復(fù)合材料力學(xué)性能

Table 1. Mechanical properties of FRP materials

名稱

符號

單位

UD

Biaxial

Triaxial

玻纖/環(huán)氧

Ex

Mpa

39000

11400

28500

Ey

Mpa

8920

11400

13500

Ez

Mpa

8920

8920

8920

表2.泡沫材料力學(xué)性能

Table 2. Mechanical properties of foam materials

名稱

符號

單位

模量值

Balsa木

Ex

Mpa

1000

Ey

Mpa

35

PVC

Ex

Mpa

65

1.2 模型建立與網(wǎng)格劃分

首先,依據(jù)三維坐標(biāo)變換原理求解出葉片空間截面翼型的實(shí)際位置,然后以大型三維軟件PROE為工作平臺,通過導(dǎo)入空間坐標(biāo)點(diǎn),生成B樣條曲線,如圖2所示為本計(jì)算模型的三維線框圖。

葉片2

圖2.葉片線框投影圖

Fig.2 Blade frame drawing

  最后,由曲面掃掠命令生成葉片三維外形圖,再結(jié)合曲面曲線分析命令對所生成的曲線、曲面進(jìn)行檢驗(yàn)和修改,直至生成符合要求的葉片三維外形圖,如圖3所示。將生成的三維模型轉(zhuǎn)化為IGES格式文件,為后續(xù)建立有限元模型做準(zhǔn)備。

葉片3 

圖3.葉片外形圖

Fig.3 Blade outline diagram

將PROE導(dǎo)出的IGES格式文件,輸入到ANSYS系統(tǒng)中,得到了ANSYS環(huán)境下的葉片三維模型。采用Shell99單元對葉片殼體、梁、腹板進(jìn)行網(wǎng)格劃分,有限元模型單元數(shù)為29914,節(jié)點(diǎn)數(shù)為88680,如圖4所示。

葉片4 

圖4.網(wǎng)格劃分圖

Fig.4 Meshing diagram

1.3 約束與載荷

葉片根部采用剛性固定的約束形式,即根部所在節(jié)點(diǎn)的6個(gè)自由度被固定,整個(gè)葉片簡化為懸臂梁模型。加載方式與試驗(yàn)加載方法保持一致,第一個(gè)工況,即在flapwise方向,選擇單點(diǎn)加載,施加集中力39KN,如圖5所示;第二個(gè)工況,即在edgewise方向,選擇四點(diǎn)加載,從左至右分別施加集中力57.5KN、21.4KN、20.4KN、36.2KN,如圖6所示。

葉片5 

2 計(jì)算結(jié)果與分析

2.1 質(zhì)量計(jì)算結(jié)果

表3即為ANSYS輸出的風(fēng)電葉片質(zhì)量計(jì)算結(jié)果,重心位置與實(shí)測值基本吻合,葉片總質(zhì)量低于實(shí)際值。產(chǎn)生葉片質(zhì)量計(jì)算值比實(shí)測值小的主要原因是葉片灌膠后,其泡沫的密度應(yīng)該大于實(shí)際泡沫的密度,以及建立的葉片有限元模型沒有考慮實(shí)際葉片中的附件(如接閃器等金屬件)重量等。

表3.風(fēng)電葉片質(zhì)量計(jì)算結(jié)果

Table 3. The mass result of the blade

 

質(zhì)量[kg]

重心(距葉根)[m]

實(shí)際值

5950

12.1

有限元計(jì)算值

5571

11.9

誤差

6.4%

1.65%

2.2 模態(tài)分析結(jié)果

表4即為ANSYS輸出的風(fēng)電葉片一階固有頻率計(jì)算結(jié)果,并且提取了葉片的前五階振型,如圖7所示。

表4.風(fēng)電葉片一階固有頻率計(jì)算結(jié)果

Table 4. The first natural frequency of the blade

 

頻率值[Hz]

一階flapwise方向

一階edgewise方向

試驗(yàn)值

0.8

1.46

計(jì)算值

0.89

1.61

誤差

11.25%

10.27%

由圖7可知,一階頻率為flapwise方向一階固有頻率,二階頻率為edgewise方向一階固有頻率。由表4知葉片一階固有頻率的計(jì)算值比實(shí)測值大,造成計(jì)算值偏大的主要原因是葉根約束方式與試驗(yàn)(通過螺栓固定)不一致,以及計(jì)算質(zhì)量小于實(shí)際質(zhì)量等。

葉片6 

圖7.振型圖

Fig.7 Vibration mode diagram

2.3 靜力分析結(jié)果

  表5即為兩種工況下計(jì)算出的風(fēng)電葉片最大撓度值,計(jì)算結(jié)果與實(shí)測值吻合較好。

表5.兩種載荷工況下風(fēng)電葉片的最大撓度

Table 5. The most displacement of the blade in the two load case

 

葉片最大撓度[m]

flapwise方向

edgewise方向

試驗(yàn)值

5.36

1.11

計(jì)算值

4.83

1.01

誤差

9.9%

9%

葉片變形如圖8、圖9所示。

葉片7 

圖9.edgewise方向變形圖

Fig.9 Deformation diagram in edgewise

3 結(jié)論

(1) 采用殼單元模擬風(fēng)電葉片計(jì)算出葉片總質(zhì)量、撓度變形能與實(shí)測結(jié)果相對誤差小于10%,證明了該方法在工程應(yīng)用上的可行性和可靠性。

(2) 由于葉根約束方式與試驗(yàn)(通過螺栓固定)不一致以及計(jì)算質(zhì)量小于實(shí)際質(zhì)量等原因,葉片固有頻率的計(jì)算值略高于實(shí)測結(jié)果。

(3) 采用殼單元計(jì)算風(fēng)電葉片剛度,既可保證計(jì)算結(jié)果的可靠性又可縮短建模時(shí)間提高工作效率,對風(fēng)電葉片結(jié)構(gòu)分析的實(shí)際工程應(yīng)用具有重要價(jià)值。

 
關(guān)鍵詞: 葉片 復(fù)合材料
 
[ 復(fù)材學(xué)院搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 違規(guī)舉報(bào) ]  [ 關(guān)閉窗口 ]

 

 
?
推薦圖文
推薦復(fù)材學(xué)院
點(diǎn)擊排行
(c)2013-2020 復(fù)合材料應(yīng)用技術(shù)網(wǎng) All Rights Reserved

  魯ICP備2021047099號

關(guān)注復(fù)合材料應(yīng)用技術(shù)網(wǎng)微信
亚洲国产成AV人天堂无码| 在线天堂91| 亚洲天堂伊人| 中文字幕 在线 人妻| 欧美精品久久一起草| 日韩午夜影院| 99日韩| 亚洲一区二三区精品| 黄色网页入口| 日韩亚洲中字无码一区二区三区| www日韩一区导航| 九九精品九九| 欧美人久久久| 一区二区三区亚洲中文| 女生自慰网站| 一本久久道成人| 泰国精品无码av| 婷婷国产精品欧美精品| 熟妇人妻不卡中文字幕| 久久亚洲喷水视频| 美国熟妇xxxxx| 西城区| 亚洲一区二区三区无码中文字幕| 韩日在线观看视频| 久久精品幕| 无码中文字幕mv在线视频2019| 老色批a v在线精品| 日韩香蕉在线视频| 日韩骚| 男人午夜天堂男人| 小雪尝禁果又粗又大的视频| 久久夜夜玩| 无码人妻精品一区二区三区在线| 国产无码电影在线观看| 天天璪夜夜操| 日本 欧美 中文字幕| 伊人草免费视频| 午夜av内射一区二区三区红桃视| 国产草草院| 亚洲涩首页| 真人做爰毛片免费视频|